字体:大 中 小
护眼
关灯
上一页
目录
下一页
第一百四十四章 让人说不出话的报告,天堂的喜悦以及没落的结局 (第2/4页)
物理,听起来确实有些滑稽。 但是,理论物理学家却站在了学术的顶端,和数学家的地位是等同的。 布罗恩做过理论物理的研究,而且有一定成果,也凭此被聘任为芝加哥大学教授,数学水平当然是相当高的。 “放心吧!这个分析一定有问题,我一定会找出来的!”布罗恩很认真的说道。 另一边。 王浩和邱成文、张益方、田桂林等人坐在一起,在场的还有考切尔-比尔卡尔以及其他数学、物理教授。 其中的每一个人都可以说是学术大佬。 一群人说着上午的报告,也说起下午的报告,王浩还是非常有信心的。 后来的话题就转到了其他方面上。 邱成文帮忙介绍了考切尔-比尔卡尔,这个伊朗数学天才还在适应国内的环境,多认识一些人当然是更好的。 考切尔-比尔卡尔的研究领域是代数几何,特别是更高维度的双向几何,能做这方面的研究,还能够获得菲尔兹奖,足以证明其天才程度。 王浩也和考切尔-比尔卡尔说了几句,他谈到自己有一门课是《代数几何》,“我觉得这个方向很有潜力,但是,也非常的复杂,如果未来碰到问题,还请比尔卡尔先生不吝赐教。” 比尔卡尔也很客气的说了几句。 他们随后就谈到了各自的研究,王浩随口说在研究ns方程,顿时引起了很多人注意。 这个课题可不是一般数学家敢触碰的。 NS方程是千禧年七大数学猜想之一,其难度自然是非常高的。 邱成文听了以后,都觉得有些诧异,他感觉王浩的研究速度太快了,好像才刚完成角谷猜想的证明,又做了眼前复杂的物理分析,结果又转到了NS方程? 他评价了一句,“NS方程,这个方向的内容很多,而且是个大方向。” “做这种研究一定要耐心,慢慢来,没有成果不要紧,坚持住才最重要。” NS方程方向的研究,倒不是一定要破解世界难题,在世界难题的方向上有进展,也都是重大成果。 这不是一个简单的数学问题。 比如,角谷猜想,说白了就是一个数学猜想,没有什么特别的意义。 哥德巴赫猜想也一样,说起难度,当然是世界公认的,但实际上就是一个数学题目而已。 NS方程就不一样了。 千禧年七大数学猜想,每一个都是非常重要的,其重要性体现在应用上,NS方程的主要应用就是流体力学,它反映了粘性流体流动的基本力学规律。 只要是这个方向的工作,就肯定会接触到NS方程。 其他千禧年数学猜想也是一样的,都是在科技上有非常重要的应用,正因为如此,研究才非常有意义。 当然,做NS方程方向的研究,并不意味着一定要破解难题。 其他人倒是理解王浩为什么会选择NS方程,因为他本来就擅长偏微分方程,甚至可以说‘出身偏微分方程’。 NS方程就是一类经典的非线性偏微分方程。 …… 下午,报告继续。 报告进入到了数学分析阶段,数学分析也是难度最高、最重要的阶段。 数学分析是以计算机分析结果作为基础的,主体就是利用塑造函数来进行图像分析。 难点,就在这里。 函数塑造可不是容易的事情。 当真正进入到复杂函数的塑造讲解时,好多人也理解了,为什么上午的时候,王浩可以那么快完成函数的塑造。 相对于正在讲解的内容来说,上午塑造的函数就只是个小函数而已。 这其中的差别就和解三次方程和一次方程的区别,指数层次都感觉不一样了。 他们不确定函数塑造是否正确,但能肯定王浩绝对是一个,利用塑造函数来做数据分析的专家。 利用塑造函数来做数据分析,是一个很有效的分析方法,但已经把99%的数据分析专家排除在外。 这个方法难度级别太高,需要非常高的数学基础水平。 首先,必须是个有一定水平的数学家。 王浩的讲解不慌不忙,可以说节奏非常的慢,只要碰到有难度的地方,他都会讲解的非常精细
上一页
目录
下一页